ECE 103 Lecture 11, Oct 22, 2013

Let's review on systems concept.

Input \(\sum_{k=-\infty}^{\infty} x(t) e^{-j2\pi f_0 t} \) to system \(H(f) = \frac{1}{2} \delta(f - f_0) + \frac{1}{2} \delta(f + f_0) \) yields

\[y(t) = \frac{1}{2} x(t) e^{-j2\pi f_0 t} + \frac{1}{2} x(t) e^{j2\pi f_0 t} \]

When \(x(t) \) is periodic with period \(T_0 \), its fundamental frequency is \(f_0 = \frac{1}{T_0} \) and angular frequency is \(\omega_0 = 2\pi f_0 \).

\[x(t) = \sum_{k=-\infty}^{\infty} C_k e^{j2\pi k\omega_0 t} = C + \frac{1}{2\pi} \sum_{K=0}^{\infty} (c_k + c_k) e^{j2\pi k\omega_0 t} \]

\[e^{j2\pi \omega_0 t} = 1 \]

\[c_k = 1/2 \] for \(k = 0 \)

\[c_k = 0 \] for \(k \neq 0 \)

\[C \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[1 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]

\[j \]

\[e \]

\[\omega_0 \]

\[k \]

\[\tau \]

\[\omega \]

\[2\pi \]

\[f \]

\[0 \]
TABLE 4.8 Amplitude and Time Transformations

<table>
<thead>
<tr>
<th>Equation Title</th>
<th>Equation Number</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential form of Fourier series</td>
<td>(4.11)</td>
<td>(y(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi ft})</td>
</tr>
<tr>
<td>Combined trigonometric form of Fourier series</td>
<td>(4.12)</td>
<td>(y(t) = \sum_{k=-\infty}^{\infty} A_k \cos(k \omega_0 t) + B_k \sin(k \omega_0 t))</td>
</tr>
<tr>
<td>Trigonometric form of Fourier series</td>
<td>(4.13)</td>
<td>(y(t) = \sum_{k=-\infty}^{\infty} A_k \cos(k \omega_0 t) + B_k \sin(k \omega_0 t))</td>
</tr>
<tr>
<td>Relation of different forms of Fourier coefficients</td>
<td>(4.14)</td>
<td>(y(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi ft} = \sum_{k=-\infty}^{\infty} A_k \cos(k \omega_0 t) + B_k \sin(k \omega_0 t))</td>
</tr>
<tr>
<td>Fourier series coefficients formula</td>
<td>(4.15)</td>
<td>(c_k = \frac{1}{2 \pi} \int_{-\pi}^{\pi} y(t) e^{-j2\pi ft} dt)</td>
</tr>
<tr>
<td>Unit function</td>
<td>(4.16)</td>
<td>(y(t) = \frac{1}{2 \pi})</td>
</tr>
<tr>
<td>Steady-state output expressed as Fourier series</td>
<td>(4.17)</td>
<td>(x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi ft})</td>
</tr>
<tr>
<td>Fourier coefficients of output signal</td>
<td>(4.18)</td>
<td>(x(t) = \sum_{k=-\infty}^{\infty} c_k e^{j2\pi ft})</td>
</tr>
</tbody>
</table>

\[c_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) e^{-j2\pi ft} dt \]

For \(k = 0 \)

\[c_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) dt \]

For \(k \neq 0 \)

\[c_k = \frac{1}{\pi} \int_{-\pi}^{\pi} x(t) e^{-j2\pi ft} dt \]
\[\frac{c_k}{c_{k-1}} = \frac{k}{(k-1)} \]

\[c_k = j \frac{k}{\pi} \]

\[\gamma_k = \tan^{-1} \frac{k}{2\pi} \]

\[\theta_k = 90 - \gamma_k \]

\[\theta_k = 90 - 43.5^\circ \]

\[\theta_k = 90 - 52.5^\circ \]

\[\theta_k = 90 - 90^\circ \]