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Exercise 32: Determine the Laplace transform of the
causal sawtooth waveform shown in Fig. F-3-2 (compare
with Example 1-4).
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In general, identifying the locations of the poles and zeros of
a function X(s) can be greatly facilitated if X(s) can be cast in
the form

X Nis) A —z)s—%)...(58—2y)
)= = —— |

Dis)  (s—p)s—p2)...(s—pa)

where the zeros 2) (0 Zp are the roots of N(s) = 0 and the
poles py 1o p, are the rools of D(s) = 0. As we will see in
latér chapiers, The specilic focations of poles and zeros in the
s-plane carry great significance when designing frequency
filters or characierizing their performance.

Occasionally, X(s) may have repeated poles or zeros, such
asz) = 23 or py = pa. Multiple zeros are marked by that many
concentric circles, such as “®" for two identical zeros, and
multiple poles are marked by overlapping Xs “x."

Concept Question 3-3: How does one determine the
poles and zeros of a rational function X(s)? (See 'E))

Exercise 3-3: Determine the poles and zeros of
X(s) = (s + a)/[(s + @) + ).

Answer: z = (—a + j0), p1 = (—a — jex), and
p2 = (~a + juy). (See (D)
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Had we analyzed a lincar circuit (or system) driven by a
sinusoidal source that started at f =0 and then wanted to
reanalyze it anew, but we wanted to delay both the cosine
function and the start time by 7', Eq. (3.19) provides an
expedient approach to obtaining the transform of the delayed
cosine function.

Exercise 3-4: Determine, for T > 0,

Lilsinaxn( — T u@ —T)}.

re
Answer: ¢~ '* Fra - (See (3)
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3-3.3 Frequency Shift

According to the time-shift property, if ¢ is replaced with
(1 — T in the time domain, X (s) gets multiplicd by e~ 7* in the
s-domain. Within a (—) sign, the converse is also true: if s is
replaced with (s + a) in the s-domain, x(¢) gets multiplied by
e in the time domain. Thus,

eV x(t) «= X(s+a) (3.20)

(frequency shift property)
0
sk &
I =y Y
= X(;)? XCﬁ'\'AD
5 =5ta

“f £.8)ud) - z § (- KT)
E [S‘T ,,_H,} Z S&*kﬁ’l
= ki 05[%9 -XT9

e =kl
£

s T ST KT ¥ &




e time doasin s cqivaent 0 (3)
i the > comain e hen (b subiracing.

mulipl
£0) from s XG5

s
P
i 3o

Himeiecelbaio progerdy |

T very i, (3.21), we sart with tho sanand defiition for
the Lapiace ransform:

wafion o g _);qqu(df)

Intprason by parts with

R T N pror
. s
== X()+5X@)

e

—eranf - [ en

072 XG0 an

which s cyivalent 1o By, (121)
Higher dert can e cbuained by repeading the

For the sccoend derivative of 340),

3-3.> Iime Integration

Integration of x(1) in the time domain is equivalent to dividing
X(s) by s in the s-domain:

'

]ru’)dr' -— lxm, (3.25)
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(time-integration property)
lication of the Laplace definition gives
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Integration by parts with
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Both limits on the first term on the right-hand side yield zero

values.
For example, since
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3-3.6 Initial- and Final-Value Theorems

The relationship between x(4) and X(s) is such that the
initial value x(0") and the final value x(00) of x(f) can be
determined directly from the expression of X(s)—provided
certain conditions arc satisfied (as discussed later in this
subscction).

Consider the derivative property represented by Eq. (3.23) as

d.
Llx'] = % e ™ dr =5 X(s) —x(07). (3.28)
P
o

If we take the limit as s — 00 while recognizing that x(07) is
independent of s, we get

00

+ 2 .
lim f’i e dr} lim [s X(s)] — x(07).  (3.29)
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Theintcgral on the lefi-hand side can be split into tw
onc over the time segment (0-,0%), for which
another over the segment (0%, 0). Ths.
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@30)
Ass —+ 00, the exponential function ¢~ causes the integrand

of the last term 1o vanish, Equating Egs. (3.29) and (3.30) leads.
0

@3n

‘which is known as the initial-value there.
A similar treatment in which s is made o approach 0 (instead
of 00} in Eq. (3.29) leads o the final-valiae theorem:

2(00) = lim s X(s)
- @32)
Ufinal-value theorem)

We should note that Eq. (3.32) is uscful for determining
x(00), 0 long ar x(0c) cxists. Othcrwise, application of
Eq. (3.32) may lead w0 an erroncous result. Consider, for
example, x(1) = cos{ont) (f), which docs not have a unique
valucas? — 00, Yet, application of Eq. (3.32) 1o Eq. (3.9) leads
10.(00) = 0, which is incorrect.
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Example 3-4: Initial and Final Values
Determine the initial and final values of a function x(f) whose
Laplace transform is given by

25s(s +3)
(s+ 1)(s? + 25 + 36)

X(s) =

Solution: Application of Eq. (3.31) gives

25s*(s + 3
x(0%) = lim s X(s) = lim LI
S0 s—+00 (s + 1)(s?

To avoid the problem of dealing with 00, it is often more
convenient to first apply the substitution s = 1/u, rearrange
the function, and then find the limit as u — 0. That is,
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To determine x(oc), we apply Eq. (3.32):
i i 255%(s + 3)
o0 = i s X =l e @+ 25436

Exercise 3-6: Determine the initial and final values of

x(r) if its Laplace transform is given by ‘Efm Fx(@
5 57
8+ 68 + 18
X@$) = ———— .
s(s +3)°

Answer: x(0%) = 1, x(00) = 2. (Sce &) SQ;;" $X6)

3-3.7 Frequency Differentiation
Given the definition of the Laplace transform, namely,
00
X(s) = Llx()] = f,nn e dt, (3.33)
0
if we take the derivative with respect to s on both sides, we have

d X(s)
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= [ — o8t
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= v

0
- /[—j-___‘(”lr”‘ dr = L1 x(1)], (3.34)
0
where we recognize the integral as the Laplace transform of
the function [—f x(1)]. Rearranging Eq. (3.34) provides the
Jrequency differentiation relation:

1) - 20y, (3.35)
ds

(frequency differentiation property)

which states that multiplication of x(1) by —f in the time domain
is equivalent (o diff iating X(s) in the s-d
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3-5: Applying the Freq D
Property
Given that
1
X(s) = Lle ™ u(n)] = 5
s+a

apply Eq. (3.35) to obtain the Laplace transform of re™* u(1).

Solution:

Llre™ u(n)] =

-
ds

3-3.8 Frequency Integration

Integrating both sides of Eg. (3.33) from s 10 00 gives
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Since 1 and s’ are independent variables, we can interchange
the order of the integration on the right-hand side of Eq. (3.36),
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This frequency integration property can be expressed as

£

Ei0) -— X(s') ds'. (3.38)

(frequency integration property)

Table 3-1: Properties of the Laplace transform for causal functions; ie., «(r) = 0 for 1 < 0.

Property x(f) X(s) = £lx(n]
1. Multiplication by constant Kx(t) == KX
2. Linearity Km0+ Kan() <= K Xi6s)+ K2 Xa(s)
ali (at), 0 L \(5)
me scalin wal), a>0 = -X(=
e 3 X6
4. Time shift M -Tyat—T) == X5
‘requency shift e x(f) = X(s+a)
6. Time 15t derivative - sX@E) - x(07)
7. Time 2nd derivative - X(s) - xx(07)
—x(07)
f i
8. Time integral fm’; di' e - X(8)
s
o 7
quency derivative Lx(f) - o Xis) = —X'(s)
N
o
10. Frequency integral $ P C!)xu, de
11, Initinl value xh) = im s X(s)
12. Final value lim x(f) =x(60) = limsX(s)
[ty o
13, Convolution Xy axr) == Xs) Xa(s)




