EE103 Final Examination
Dec. 12, 2017 4:00-7:00 p.m.

Name______________________ ID_________________________

i. You are allowed to use 2 pages of formulas and tables, but not any concept descriptions or derivations.

ii. Please fill the score blanks below:
 Qz1_________ Qz2_________ Qz3_________ Qz4_________
 Qz5_________ Qz6_________ Qz7_________ Qz8_________
 Delete two lowest scores and provide the average of 6 quizzes in 2 decimal points
 Average= ___________

 Midterm Exam Score (modified)= ___________

iii. The final course grade will be based on the following weights

 Quiz Average 20%
 Midterm Exam 30%
 Final Exam 50%

Final Exam provides 6 Problems

[1] 20 points __________
[2] 15 points __________
[3] 20 points __________
[4] 20 points __________
[5] 20 points __________
[6] 5 points __________

Total 100 points __________
[1] (20 points) Given a function \(x(t) = (2(t + 1) u(t+1) - 2t u(t) - 2 u(t-2) \)

a new function \(x_1(t) \) is defined as \(x_1(t) = 2 x_{\text{even}}(t) + x_{\text{odd}}(t) \).

Plot \(x_{\text{even}}(t) \), \(x_{\text{odd}}(t) \) and \(x_1(t) \) on the graph below.

Express \(x_1(t) \) mathematically

\[\boxed{ \text{Expression for } x_1(t) } \]
[2] (15 points) A linear time-invariant (LTI) system is described represented below.

\[x(t) = \delta(t) \]

\[y(t) = h(t) \]

For \(h(t) = e^{-3t} u(t) \) and \(x(t) = \text{rect}(t/2) \), find \(y(t) \) by using \(y(t) = x(t) * h(t) = h(t) * x(t) \).
[3] (30 points) A windowed function is plotted below.

(a) (10 points) **Write down a mathematical description of** \(x(t) \) **by using the cosine and rectangular functions.**

\[
x(t) = (\text{cosine function}) x (\text{rectangular function})
\]

Let \(x_1(t) = x(t) \times \sum_{k=-\infty}^{\infty} \delta(t - k3\pi) \)

(b) (20 points) **Find Fourier transform of** \(x_1(t) \).

Step 1 (10pts) First find \(X(\omega) \)

Step 2 (10pts) Find \(X_1(\omega) \)
[4] (20 points) Let us consider the following OP amp circuit.

Let \(C_1 = 2 \, C_2 = 1 \, \mu F \), all resistance values are \(1 \, M\Omega \)

(a) (15 points) Find \(H(s) = \frac{V_o(s)}{V_i(s)} \)
(b) (5 points) **Find** $h(t)$ **by taking inverse Laplace transform of** $H(s)$.
[5]. (20 points) The following figure show a Bode plot of a band-pass filter.

At $\omega = \omega_1$, the gain in dB is 10 dB.

(a). (10 points) Find the corresponding $H(j\omega)$ with identification of all zero and pole (angular) frequencies. Hint: $H(j\omega) = \frac{K (1 + j \omega/\omega_z)}{[(1 + j \omega/\omega_{p1})(1 + j \omega/\omega_{p2})]}$ and ω_1 can be found from $H(j\omega)$

(b). (5 points) Find $H(s)$ by replacing $j\omega$ by s and simplifying the terms such that $H(s) = M \frac{N(s)}{D(s)}$, $N(s)$ and $D(s)$ are polynomial functions of s.
(c) (5 points) **Find output** \(y(t) \) for \(x(t) = 10 \cos (100\sqrt{10} t + \Theta_1) + 5 \cos (10000 t + \Theta_2) \).

Hint: \(y(t) = A_1 \cos (100\sqrt{10} t + \Theta y_1) + A_2 \cos (10000 t + \Theta y_2) \)

Find \(A_1, A_2 \) from the gain information in the Bode plot. For simplicity neglect \(\Theta y_1,2 \).

Also, use an approximation as \(I_1 + j K I = K \) for \(K > 3 \).
[6] (5 points) Describe **most significant concepts** you have learned from EE103 in the Fall 2017 quarter.